
O S C A R S I X R A D A R

Security Assessment

Report
Automated Penetration Testing & Vulnerability Analysis

httpbin.org HIGH RISK

Urgent remediation needed

Assessment Date: January 22, 2026 at 12:45 UTC

CONFIDENTIAL - For Authorized Recipients Only

Report ID: httpbin-org-20260122

Page 1 of 15 CONFIDENTIAL

Table of Contents

1. Summary Dashboard

2. Executive Summary

3. Technical Findings

4. Remediation Recommendations

5. Risk Assessment

6. Attack Analysis

7. Appendix

Page 2 of 15 CONFIDENTIAL

1. Summary Dashboard

Vulnerability Summary

0
CRITICAL

1
HIGH

6
MEDIUM

4
LOW

2
INFO

Detected Technologies

python react swagger ui gunicorn:19.9.0 jquery gunicorn/19.9.0

Metric Value

Target httpbin.org

Total Findings 11

Tests Executed 13

Assessment Date January 22, 2026

Overall Risk Level HIGH

2. Executive Summary

Executive Summary

A comprehensive security assessment was conducted on httpbin.org, involving 13

distinct security tests to evaluate the application's defensive posture against

Page 3 of 15 CONFIDENTIAL

common web-based attacks. The assessment identified a total of 13 security

findings across various severity levels, with the majority classified as medium to

low risk. While no critical vulnerabilities were discovered, one high-severity issue

was identified that requires immediate attention, along with several medium-

priority items that should be addressed to strengthen the overall security

framework.

The most significant security risk identified is a Cross-Origin Resource Sharing

(CORS) misconfiguration that could allow malicious websites to access and steal

sensitive user data. This vulnerability occurs because the application improperly

reflects arbitrary website origins in its security headers while allowing credentials

to be transmitted. An attacker could exploit this flaw by tricking users into visiting

a malicious website that then makes unauthorized requests to httpbin.org on their

behalf, potentially exposing personal information or session data.

The remaining findings consist of six medium-severity issues and four low-severity

concerns that, while not immediately exploitable, represent areas where security

controls could be strengthened. These findings typically relate to information

disclosure, missing security headers, and suboptimal configuration practices that

could be leveraged by attackers as part of a broader attack strategy.

We recommend prioritizing the immediate remediation of the CORS vulnerability by

implementing a strict whitelist of approved origins rather than reflecting arbitrary

header values. Additionally, a systematic review and remediation of the medium-

severity findings should be undertaken within the next 30-60 days to reduce the

overall attack surface. Regular security assessments should be incorporated into

the development lifecycle to identify and address similar issues proactively.

3. Technical Findings

Technical Findings

High Severity Findings (1)

CORS Misconfiguration

A critical Cross-Origin Resource Sharing (CORS) vulnerability was identified on the

target application at https://httpbin.org. The server exhibits dangerous origin

Page 4 of 15 CONFIDENTIAL

reflection behavior, where arbitrary Origin header values are directly mirrored in

the Access-Control-Allow-Origin (ACAO) response header. Testing confirmed that

when an Origin header value of "https://evil.com" was sent, the server responded

with "Access-Control-Allow-Origin: https://evil.com" along with "Access-Control-

Allow-Credentials: true".

This configuration creates a severe security exposure that allows any malicious

website to make authenticated cross-origin requests on behalf of victims. An

attacker can craft a malicious webpage that sends CORS requests to the vulnerable

application, potentially accessing sensitive user data including authentication

tokens, personal information, or performing unauthorized actions. Since credentials

are explicitly allowed (ACAC: true), the attack can leverage the victim's existing

session cookies, making it particularly dangerous for authenticated users.

The vulnerability violates the fundamental principle of CORS security controls and

effectively negates the same-origin policy protection that browsers implement by

default.

Medium Severity Findings (6)

Security Headers - Missing Transport and Content Protection

Multiple critical security headers are absent from the application's HTTP responses,

significantly weakening the application's defense posture against common web

attacks.

Transport Security Deficiencies:

The application lacks HTTP Strict Transport Security (HSTS) headers, failing to

enforce HTTPS-only communication. Without HSTS, users remain vulnerable to

protocol downgrade attacks where attackers can force connections over

unencrypted HTTP, enabling man-in-the-middle attacks and cookie hijacking.

Modern browsers rely on HSTS to prevent accidental HTTP connections and protect

against SSL stripping attacks.

Content Security and Injection Protection:

No Content Security Policy (CSP) header was detected, removing a crucial defense

layer against Cross-Site Scripting (XSS) attacks. CSP allows applications to define

trusted sources for scripts, styles, and other resources, significantly reducing the

impact of injection vulnerabilities. Without CSP, any XSS vulnerability in the

Page 5 of 15 CONFIDENTIAL

application can lead to complete compromise of user sessions and data theft.

Clickjacking Protection:

The absence of X-Frame-Options headers leaves the application vulnerable to

clickjacking attacks. Malicious websites can embed the application in invisible or

disguised iframes, tricking users into performing unintended actions while

believing they are interacting with a different interface. This can lead to

unauthorized transactions, account modifications, or data disclosure.

These missing headers represent fundamental security misconfigurations that

should be addressed as standard security practices, regardless of the specific

application functionality.

Low Severity Findings (4)

Security Headers - Additional Hardening Opportunities

Several supplementary security headers are missing, representing opportunities to

further strengthen the application's security posture through defense-in-depth

principles.

Content Type Protection:

The X-Content-Type-Options header is not implemented, allowing potential MIME

type confusion attacks. Without the "nosniff" directive, browsers may incorrectly

interpret file types, potentially executing malicious content that was uploaded as

seemingly harmless file types. While less critical than other headers, this

protection helps prevent certain file upload attack vectors.

Information Leakage Prevention:

No Referrer-Policy header was found, meaning the application does not control how

much referrer information is shared with external sites when users navigate away

from the application. This can lead to unintentional information disclosure through

URL parameters or path structures being leaked to third-party sites.

Browser Feature Control:

The modern Permissions-Policy header (successor to Feature-Policy) is absent,

missing an opportunity to restrict potentially dangerous browser APIs like

geolocation, camera, and microphone access. While not immediately exploitable,

this header provides additional control over browser features that could be abused

Page 6 of 15 CONFIDENTIAL

in conjunction with other vulnerabilities.

These findings, while lower in immediate risk, represent security best practices

that contribute to a comprehensive security implementation and help prevent

potential future attack vectors as the threat landscape evolves.

4. Remediation Recommendations

Immediate Actions (Quick Wins)

1. CORS Origin Reflection Vulnerability

EVIDENCE: Origin: https://evil.com -> ACAO: https://evil.com, ACAC: true

REMEDIATION:

- Immediately implement a strict whitelist of allowed origins in your application

- Remove any code that directly reflects the Origin header in Access-Control-Allow-

Origin

- For Python/Gunicorn applications, configure CORS middleware with explicit

allowed origins only

- Never use `Access-Control-Allow-Origin: *` with credentials enabled

LEARN MORE: Search "CORS origin reflection vulnerability python flask

remediation"

2. Cross-Site Scripting (XSS) Vulnerability

EVIDENCE: XSS found at https://httpbin.org/response-headers?

page=FUZZ&Content-Type=text/

html&Server=%3Cscript%3Ealert%28document.domain%29%3C%2Fscript%3E

REMEDIATION:

- Implement proper input validation and output encoding for all user inputs

- Use parameterized queries and escape HTML entities before rendering

- Add Content-Security-Policy header to mitigate XSS attacks

- Review all endpoints that accept user input, especially query parameters

Page 7 of 15 CONFIDENTIAL

LEARN MORE: Search "XSS prevention python web application input validation"

3. Outdated TLS Protocol Support

EVIDENCE:

- Server accepts TLS 1.0 connections at httpbin.org:443

- Server accepts TLS 1.1 connections at httpbin.org:443

REMEDIATION:

- Configure your web server/load balancer to disable TLS 1.0 and TLS 1.1

- For Gunicorn applications, update SSL configuration to support only TLS 1.2+

- Test thoroughly after changes to ensure legitimate clients can still connect

- Consider implementing TLS 1.3 for enhanced security

LEARN MORE: Search "disable TLS 1.0 1.1 gunicorn python web server

configuration"

4. Missing Critical Security Headers

EVIDENCE: Multiple security headers missing from https://httpbin.org responses:

- Header 'strict-transport-security' was not present

- Header 'content-security-policy' was not present

- Header 'x-frame-options' was not present

- Header 'x-content-type-options' was not present

REMEDIATION:

Add the following headers to all HTTP responses:

```

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline'; style-src 

'self' 'unsafe-inline'

X-Frame-Options: DENY

X-Content-Type-Options: nosniff

Referrer-Policy: strict-origin-when-cross-origin

```

LEARN MORE: Search "security headers implementation python flask gunicorn

middleware"

Page 8 of 15 CONFIDENTIAL

5. Server Version Information Disclosure

EVIDENCE: Server: gunicorn/19.9.0

REMEDIATION:

- Configure Gunicorn to suppress version information in HTTP headers

- Add `server_tokens = False` or equivalent configuration

- Consider updating Gunicorn from version 19.9.0 to the latest stable version

- Use a reverse proxy (nginx/Apache) to mask backend server details

LEARN MORE: Search "hide gunicorn server version header information disclosure"

Long-term Security Improvements

1. Technology Stack Modernization

Your application runs on Gunicorn 19.9.0 (released in 2018), which may have

known vulnerabilities. Plan a systematic upgrade of your Python web stack

including Gunicorn, Flask/Django framework, and all dependencies. Implement

automated dependency scanning in your CI/CD pipeline.

2. Implement Security Middleware Layer

Given your Python/React architecture, implement a comprehensive security

middleware that automatically applies security headers, input validation, and rate

limiting. Consider using libraries like Flask-Security or Django-Security for

standardized security controls.

3. Content Security Policy Hardening

With React frontend and Swagger UI detected, develop a tailored CSP policy that

supports your specific JavaScript requirements while blocking XSS attacks. Start

with a restrictive policy and gradually whitelist necessary resources.

4. API Security Enhancement

Since Swagger UI is present, ensure your API endpoints implement proper

authentication, authorization, input validation, and rate limiting. Consider

implementing API versioning and deprecation strategies for security updates.

5. Automated Security Testing Integration

Page 9 of 15 CONFIDENTIAL

Establish automated security scanning in your development pipeline including

SAST (static analysis), DAST (dynamic testing), and dependency vulnerability

scanning. The current findings suggest manual security testing gaps that

automation could address.

5. Risk Assessment

Overall Risk Assessment

Overall Risk Rating: Medium

Based on the vulnerability distribution analysis, the organization maintains a

Medium risk posture. While no critical vulnerabilities are present, the existence of

one high-severity vulnerability combined with six medium-severity issues creates a

moderate risk environment that requires structured attention.

Key Risk Factors Identified

The primary risk driver is the single high-severity vulnerability, which likely

represents a significant attack vector that could lead to substantial system

compromise or data exposure. The concentration of six medium-severity

vulnerabilities indicates systemic security gaps that, while individually

manageable, collectively expand the organization's attack surface. These medium-

risk items may serve as stepping stones for threat actors or could be exploited in

combination to escalate privileges or maintain persistence within the environment.

The four low-severity vulnerabilities, while not immediately threatening, represent

maintenance items that could degrade into more serious issues if left unaddressed

over time.

Business Impact Assessment

The current risk profile suggests moderate potential for business disruption. The

high-severity vulnerability poses the greatest immediate threat, potentially

enabling unauthorized access to sensitive systems or data, which could result in

regulatory compliance violations, reputational damage, or operational disruptions.

The medium-severity vulnerabilities create cumulative risk that could facilitate

Page 10 of 15 CONFIDENTIAL

lateral movement within the network or provide multiple entry points for malicious

actors.

However, the absence of critical vulnerabilities indicates that catastrophic system

failures or complete security compromises are less likely under the current threat

landscape.

Recommended Risk Treatment Priorities

Immediate priority should focus on addressing the high-severity vulnerability

through expedited patching, configuration changes, or compensating controls. This

item should be resolved within the next 30 days with dedicated resources and

executive oversight.

The six medium-severity vulnerabilities should be addressed through a structured

remediation program over the next 60-90 days, prioritized based on asset

criticality and exploitability factors. These items should be integrated into regular

maintenance cycles with appropriate resource allocation.

Low-severity vulnerabilities should be incorporated into standard maintenance

windows and addressed within the next quarter as part of routine security hygiene

practices.

Continuous monitoring and regular vulnerability assessments should be maintained

to prevent risk escalation and ensure the security posture remains stable or

improves over time.

6. Attack Analysis

OVERALL SECURITY ASSESSMENT

--

Overall Risk Level: HIGH

Total findings: 13 (0 critical, 1 high, 6 medium, 4 low, 2 informational)

Priority: Implement missing security headers to improve baseline security

posture.

Page 11 of 15 CONFIDENTIAL

Priority: Address XSS vulnerabilities to prevent client-side attacks.

ATTACK SCENARIOS

--

Attack Scenarios for httpbin.org

Cross-Origin Data Theft via CORS Misconfiguration

An attacker hosts a malicious website that makes JavaScript requests to

httpbin.org endpoints while a victim is logged in. Due to the CORS origin

reflection vulnerability, the malicious site can read sensitive API responses

and user data that should be protected by same-origin policy, potentially

exposing authentication tokens or personal information.

Clickjacking Attack on API Testing Interface

An attacker embeds httpbin.org's Swagger UI interface in an invisible iframe

on a popular website, overlaying it with fake content like a "Download"

button. When users click what they think is legitimate content, they're

actually interacting with the hidden API interface, potentially triggering

unintended API calls or data modifications without their knowledge.

PRIORITIZED REMEDIATION

--

1. CORS Origin Reflection Vulnerability

 Priority Score: 95

 Action: Restrict CORS to specific trusted origins

 Factors: CORS can lead to data theft, Strong evidence

2. HTTPBin - Cross-Site Scripting

 Priority Score: 65

 Action: Review and remediate as appropriate

 Factors: XSS is directly exploitable

3. Missing Security Header: HTTP Strict Transport Security (HSTS)

 Priority Score: 55

 Action: Add missing security headers to server configuration

 Factors: Strong evidence

4. Missing Security Header: Content Security Policy (CSP)

 Priority Score: 55

 Action: Add missing security headers to server configuration

 Factors: Strong evidence

5. Missing Security Header: X-Frame-Options (Clickjacking Protection)

Page 12 of 15 CONFIDENTIAL

 Priority Score: 55

 Action: Add missing security headers to server configuration

 Factors: Strong evidence

Page 13 of 15 CONFIDENTIAL

7. Appendix

A. Raw Findings Data

APPENDIX A: Detected Technologies

--

 - python

 - react

 - swagger ui

 - gunicorn:19.9.0

 - jquery

 - gunicorn/19.9.0

APPENDIX B: Finding Summary

--

1. [MEDIUM] Missing Security Header: HTTP Strict Transport Security (HSTS)

 Location: https://httpbin.org

2. [MEDIUM] Missing Security Header: Content Security Policy (CSP)

 Location: https://httpbin.org

3. [LOW] Missing Security Header: X-Content-Type-Options

 Location: https://httpbin.org

4. [MEDIUM] Missing Security Header: X-Frame-Options (Clickjacking Protection)

 Location: https://httpbin.org

5. [INFO] Missing Security Header: X-XSS-Protection

 Location: https://httpbin.org

6. [LOW] Missing Security Header: Referrer-Policy

 Location: https://httpbin.org

7. [LOW] Missing Security Header: Permissions-Policy

 Location: https://httpbin.org

8. [HIGH] CORS Origin Reflection Vulnerability

 Location: https://httpbin.org

9. [MEDIUM] Clickjacking Vulnerability - No Frame Protection

 Location: https://httpbin.org

10. [INFO] Server Version Disclosure

 Location: https://httpbin.org

11. [MEDIUM] TLS 1.0 Protocol Enabled

 Location: httpbin.org:443

12. [LOW] TLS 1.1 Protocol Enabled

 Location: httpbin.org:443

Page 14 of 15 CONFIDENTIAL

13. [MEDIUM] HTTPBin - Cross-Site Scripting

 Location: https://httpbin.org/response-headers?page=FUZZ&Content-Type=text/

html&Server=%3Cscript%3Ealert%28document.domain%29%3C%2Fscript%3E

Oscar Six Radar - Automated Security Assessment Platform

This report contains confidential security information and is intended for authorized recipients

only.

Unauthorized distribution or disclosure is prohibited.

Page 15 of 15 CONFIDENTIAL

	Security Assessment Report
	Table of Contents
	1. Summary Dashboard
	Vulnerability Summary
	Detected Technologies

	2. Executive Summary
	3. Technical Findings
	4. Remediation Recommendations
	5. Risk Assessment
	6. Attack Analysis
	7. Appendix
	A. Raw Findings Data

